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Abstract We introduce a new model for personal recog-
nition based on the 3-D geometry of the face. The model
is designed for application scenarios where the acquisition
conditions constrain the facial position. The 3-D structure of
a facial surface is compactly represented by sets of contours
(facial contours) extracted around automatically pinpointed
nose tip and inner eye corners. The metric used to decide
whether a point on the face belongs to a facial contour is its
geodesic distance from a given landmark. Iso-geodesic con-
tours are inherently robust to head pose variations, includ-
ing in-depth rotations of the face. Since these contours are
extracted from rigid parts of the face, the resulting recogni-
tion algorithms are insensitive to changes in facial expres-
sions. The facial contours are encoded using innovative pose
invariant features, including Procrustean distances defined
on pose-invariant curves. The extracted features are com-
bined in a hierarchical manner to create three parallel face
recognizers. Inspired by the effectiveness of region ensem-
bles approaches, the three recognizers constructed around
the nose tip and inner corners of the eyes are fused both at
the feature-level and the match score-level to create a uni-
fied face recognition algorithm with boosted performance.
The performances of the proposed algorithms are evaluated
and compared with other algorithms from the literature on a
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large public database appropriate for the assumed constrained
application scenario.

Keywords Face recognition · 3-D surface representation ·
Classifier fusion · Stepwise-LDA · Iso-geodesic contours

1 Introduction

Biometrics, which refers to automatic identification of indi-
viduals based on their measurable physiological or behav-
ioral attributes, has received considerable attention from
academia, government agencies, and industries to the extent
that several degree programs focusing on the engineering and
design of biometric systems (Bachelor of Science in Bio-
metric Systems, West Virginia University. http://www.lcsee.
cemr.wvu.edu/ugrad/degree-info.php?degree=bsbs) have
been established. This interest which is fueled by the emer-
gence of important applications (e.g. access control to facil-
ities, surveillance, and airport screening) has taken on a new
urgency in light of heightened global security concerns and
a desire to constrain the mobility of criminals (Morgan and
Krouse 2005; Latta 2004).

Although many biometric modalities (face, fingerprints,
iris, hand geometry, gait) have been considered over the
last few decades, no single modality outperforms others
in all applications and deployment conditions. For exam-
ple, fingerprints are not suitable for an access control to a
coal mine where users are likely to have dirty and worn
fingerprints (Biometrics frequently asked questions 2006).
Because of its unique advantages, the human face is consid-
ered the modality of choice in many sensitive applications.
For example, the International Civil Aviation Organization
mandated the use of face in its 2002 resolution (ICAO 2004)
as the primary biometric modality in the new generation
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of travel documents. Facial images are easily acquired with
ordinary cameras with minimum cooperation from subjects.
Acquisition of facial images is contact-less and if passive
sensing is used, largely non-intrusive and does not raise
health concerns, whereas fingerprint scanners requires touch-
ing a sensor used by countless individuals (Bowyer et al.
2004). Facial biometrics are understandable for human oper-
ators and the validity of the decisions made by a machine can
quickly be verified by a human supervisor, unlike iris scans
or fingerprints.

Here we introduce new 3-D face recognition approaches
targeting specific application domains having restricted
acquisition requirements. One such application of high
importance for national security is airport screening, where
face recognition is performed under the supervision of a
human administrator. Operating under assumptions speci-
fied by the National Institute of Standards and Technology
(NIST), we assume that subjects are asked to stand at a fixed
distance from the camera without wearing accessories (e.g.
glasses or hats) and to face the camera. Other than the above
constraints, other factors such as slight head pose variations,
changes in the facial expression, variation in illumination,
and make-up should be taken into consideration. We demon-
strate the efficiency of our model using a very large appro-
priate database of co-registered 2-D and 3-D face images
acquired using a passive modality (i.e. optical stereo rang-
ing).

2 Related Work

To date, the majority of implemented face recognition algo-
rithms have been based on intensity (also known as 2-D
or portrait) images. Unbiased evaluations, such as the Face
Recognition Vendors test (FRVT) 2006 (Phillips et al. 2010)
indicate that despite the high sophistication achieved in 2-
D face recognition techniques, their collective performance
remains unsatisfactory, and degrades significantly with varia-
tions in lighting, pose, makeup, or facial expression (Phillips
et al. 2003). However, the emergence of reliable and inex-
pensive 3-D scanners has opened new opportunities for
researchers to use 3-D structure of the face alone or in
combination with 2-D information to attain better perfor-
mance (Bowyer et al. 2006).

Many early 3-D face recognition approaches were simply
extended versions of holistic 2-D approaches in which the
portrait images are replaced by range images (Gupta et al.
2007). Typically, the input range images are aligned and then
reformatted into a feature vector. The dimensionality of these
high-dimensional feature vectors are reduced using standard
statistical dimensionality reduction techniques, for instance,
principle component analysis (PCA) is used in what is known
as Eigensurfaces (Russ et al. 2006; Hesher 2003) and linear

discriminant analysis (LDA) is used in the so called Fish-
ersurfaces (Gokberk et al. 2005; Heseltine et al. 2004). The
main drawback of holistic approaches is their sensitivity to
drastic deformations (e.g. open mouth), facial expression,
and improper alignment of faces (Gupta et al. 2007).

A popular trend in 3-D face recognition are direct “surface
matching” techniques in which the two facial surfaces under
comparison are iteratively placed as closely as possible in
3-D space by minimizing a distance metric. A well-known
example of this category is the iterative closest point (ICP)
algorithm in which a variant of mean squared error (MSE)
or Hausdorff distance is used to compare surfaces at each
stage (Lu et al. 2006; Lu and Jain 2005). Although such
surface matching techniques have shown to be successful,
they are computationally very expensive which is problem-
atic when searching large databases. Another limitation of
surface matching is sensitivity to facial expression and global
deformations of the face.

In recent years, many of the problems associated with
traditional holistic approaches have been mitigated by intro-
ducing region ensembles approaches (Queirolo et al. 2010;
Faltemier et al. 2008; Kakadiaris et al. 2007; McKeon and
Russ 2010; Boehnen et al. 2009) which are considered
as a compromise between holistic and local face recog-
nition approaches. In region ensembles approaches, faces
are divided into multiple smaller subregions. Comparisons
between two faces begin by independently comparing the
corresponding subregions. Finally, the committee of simi-
larity scores collected from various subregions are merged
into a final decision. Region ensembles approaches are robust
against facial expression changes and partial occlusions, and
many of them are currently among the top performing algo-
rithms.

Geodesic distance based features have been considered
by researchers since new studies (Bronstein et al. 2005) sug-
gest that the variations of geodesic distances between pairs
of points on the human face are insignificant under expres-
sion variations. Gupta et al. (2010) proposed “Anthroface
3D”, a face recognition algorithm based on geodesic and 3-
D Euclidean distances between 10 automatically annotated
fiducial points. “Anthroface 3D” is not a pure 3-D approach,
since portrait clues are used to assist the fiducial detec-
tion step. Motivated by the desirable properties of geodesic
distances, especially their pose invariance and robustness
against changes in facial expression, we introduce geodesic
distance based features extracted around a limited number of
landmarks which are reliably detectable and highly descrip-
tive. In this work, unlike the “Anthroface 3D” features that
are distributed all over the face, features extracted around
each fiducial point are only descriptive of the surface char-
acteristics in the vicinity of the target landmarks. This prop-
erty makes the proposed feature suitable for state-of-the-art
“region ensembles approaches”.
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Recently, several 3-D face recognition algorithms have
been proposed in which three-dimensional facial surfaces
are represented by unions of curves. Comparisons between
facial surfaces is conducted implicitly by comparing the cor-
responding contour sets. This approach is mainly motivated
by the fact that curve matching is a much more studied prob-
lem than free-form surface matching, and a wealth of curve
matching techniques are available (Mpiperis et al. 2007).
Unlike facial surfaces, contours can be parameterized canon-
ically and thus can be naturally compared (Samir et al. 2006).
The number of data points on facial contours is only a fraction
of the number of points available on the original facial sur-
face, thus resulting in dramatical reductions in the required
computation and storage. Contours are often defined using
level-sets of real-valued functions such as curvature, depth,
or gradient defined on facial surfaces.

Nagamine et al. (1992) used 3-D curves resulting from the
intersection of the facial surface with vertical planes, horizon-
tal planes, or cylinders as representative facial curves. The
depth values are sampled along each cross-sectional curve
to create a feature vector. The similarity between two facial
surfaces is measured by the Euclidean distance between their
feature vectors. Experimental results indicated that the ver-
tical profile curves extracted from the central portion of
the face have the strongest distinctiveness. Circular cross-
sections extracted around the nose tip also demonstrated high
discriminating power. The main advantage of circular curves
is their robustness against rotational variations. The horizon-
tal profiles were shown to be the least effective ones.

One of the earliest contour-based facial surface represen-
tations is the “point signature” concept proposed by Chua
et al. (2000). For any given fiducial (source point) on the
facial surface, a 3-D contour C is obtained by intersecting
the surface with a sphere of radius R centered at that source
point. A plane is fitted to the contour C , then translated to
the source point in a direction normal to the plane. The point
signature is a vector of signed distances sampled at regularly
spaced angles between each point on C and its projection on
the plane. A drawback of the point signature approach is that
the neighborhood of a surface point is sometimes ambigu-
ous (Sun and Abidi 2001). This shortcoming arises from the
use of Euclidean distance. The ambiguity can result in prob-
lematic self-intersecting or discontinuous contours.

Mpiperis et al. (2007) and Samir et al. (2006) repre-
sented range images by planar level-set contours of the
depth function. The comparison between two faces is per-
formed by comparing 2-D iso-depth contours at the same
depth. Three different planar contour features are investi-
gated in Mpiperis et al. (2007): the Hu moments (Hu 1962),
elliptic Fourier descriptors (Due Trier 1996), and curvature
scale space (CSS) (Mokhtarian and Mackworth 1986). The
performances of the proposed algorithms in Mpiperis et al.
(2007) are evaluated on a database of 800 range images from

20 subjects (40 images per subject). Results are compared
with a variant of point signatures (Chua et al. 2000) showing a
better performance for iso-depth contour matching. One lim-
itation of the iso-depth contours is that they are susceptible
to changes in the gaze direction. Some Euclidean transfor-
mations of facial surface, such as in-depth rotation caused by
inaccurate estimation of gaze direction, introduce irreversible
deformations in the resulting iso-depth contours. To mitigate
the effect of pose variation on recognition performance, an
extremely accurate gaze alignment step is required that is
costly and difficult.

Mahoor and Abdel-Mottaleb (2009) used ridge lines to
represent range images in their proposed 3-D face recogni-
tion algorithm. The ridge lines are found by thresholding the
maximum principle curvature, kmax , of the facial surface.
In order to find the best match between a probe image and
gallery images, an iterative approach similar to the ICP algo-
rithm is utilized to find the optimum pose between probe and
gallery ridge lines resulting in the minimum Hausdorff dis-
tance. The final Hausdorff distance is used as a measure of
the difference between a probe and a gallery facial surface.
One disadvantage of the ridge line representation is that the
computation of curvatures involves higher order derivatives
and is thus sensitive to 3-D scanner noise.

Berretti et al. (2010) proposed a 3-D face recognition algo-
rithm in which range images are segmented into equal width
iso-geodesic stripes at increasing distance from the nose tip.
Next, the face is compactly represented by an attributed
relational graph where each node represents a stripe, and
each edge of the graph is annotated by 3-D “weighted
walkthroughs” (3DWW) between two stripes. The 3DWW
between each pair of stripes captures the relative spatial dis-
placements between all pairs of points of the input stripes.
Eventually, two given faces are compared by comparing their
corresponding annotated graphs.

A new contour-based 3-D object representation called
the “point fingerprints” (because of their similarity to fin-
gerprint patterns) was proposed by Sun and Abidi (2001)
and tested for surface registration. In this method, surfaces
are represented by sets of 2-D contours that are the pro-
jection of the 3-D iso-geodesic contours on a plane tan-
gent to the surface at the central landmark. Motivated by
point fingerprints’ effectiveness, we implemented a novel
face recognition algorithm (Jahanbin et al. 2008) where 3-D
faces were represented by planar point fingerprints extracted
around the automatically pinpointed nose tip. Iso-depth con-
tours were also extracted with respect to the nose tip and
their performance in recognizing faces was considered as
a benchmark for comparison. The shapes of obtained pla-
nar iso-depth and fingerprint contours were characterized by
two types of attributes: radial Euclidean distances from the
nose tip and a set of five commonly used shape descrip-
tors (ratio of principal axes, convexity, compactness, cir-
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cular variance, and elliptic variance) as defined in Peura
and Iivarinen (1997). These features were independently
tested in a face authentication experiment using both a
one-nearest neighbor (1NN) classifier using the Euclidean
distance metric in an LDA dimensionality reduced fea-
ture space, and a support vector machine (SVM) classi-
fier. The results indicated that no matter what classification
rule is used, facial fingerprint contours (2-D projections of
iso-geodesic contours) outperform their iso-depth counter-
part.

In this work, for the first time, the concept of iso-geodesic
contour based surface representation is combined with sta-
tistical learning techniques and region ensemble approaches
to construct a face recognition model with competitive per-
formance and robustness against pose and facial expression
variations. This model embodies several unique contributions
to the fields of 3-D face recognition, 3-D surface representa-
tion, and object detection.

One important contribution is the use of unions of iso-
geodesic contours extracted around automatically detected
landmarks to represent the 3-D surface of the human face.
This surface representation has some unique advantages that
make it useful in related applications such as 3-D surface rep-
resentation and 3-D object detection. Iso-geodesic contours
provide a compact representation of the surface by saving
only a small fraction of the surface points. Another advan-
tage of iso-geodesic contours over other representations such
as iso-depth contours in free-form surface representation is
that the shapes of iso-geodesic contours do not change with
Euclidean transformations of the surface such as in-depth
rotations.

A second important contribution is a set of innovative pose
invariant contour features, including those derived from a
Procrustean curve matching procedure. The application of
these novel features is not limited to face recognition appli-
cations. Unlike other 3-D contour features proposed in the
literature which are extracted from the projection of 3-D con-
tours onto 2-D planes (Samir et al. 2006; Mpiperis et al.
2007; Sun and Abidi 2001), these new features are directly
extracted from 3-D contours in 3-D space. Hence, they do
not compromise the iso-geodesic contours’ pose invariance
advantage over other contour representations, such as iso-
depth contours.

The third contribution is a hierarchical scheme to statis-
tically analyze, select, and combine discriminative features
from contours around each landmark into a classifier special-
ized in that region. Inspired by the effectiveness of ”region
ensembles approaches”, the proposed hierarchy combines
these regional classifiers into a unified face recognition model
with boosted performance. Sensitivity evaluations confirm
the robustness of the proposed 3-D face recognition algo-
rithm against facial expression variations and fiducial detec-
tion errors.

3 Present Work and Overview

As mentioned in the previous section, iso-geodesic contours
have desirable properties in comparison to other contours in
representing free-form surfaces. The shapes of iso-geodesic
contours do not change with Euclidean transformations of
the surface (head pose variations in our application) such
as in-depth rotations, which greatly affect iso-depth con-
tours. Unlike iso-Euclidean contours, self-crossings and dis-
continuities do not occur in iso-geodesic representations.
Here, we seek new directions to improve the preliminary iso-
geodesic contour-based 3-D face recognition concept (Jahan-
bin et al. 2008). In addition to nose tip, iso-geodesic contours
are extracted from the inner eye corners as well, provid-
ing additional discriminative features, leading to improved
face recognition performance. Nose tip and inner corners
of the eyes are prominent fiducials which can be detected
accurately. Besides, these landmarks are located on rigid
yet distinctive region of the face. The shape of eye socket
and nasal regions do not change as much as other regions
such as mouth and cheeks with limited variations in facial
expressions. Hence, features extracted from these regions are
likely to be less sensitive to facial expression changes. Auto-
matic fiducial detection and contour extraction procedures
are explained in Sect. 4.

Previously in Jahanbin et al. (2008), the obtained 3-D iso-
geodesic contours were projected onto a tangent plane at the
nose tip, and features were indirectly calculated from the
projected planar contours because planar contour features
are easier to obtain. This projection step discards impor-
tant elevation information as we transform a 3-D contour
into a planar one. Also, determining the tangent plane at the
nose tip is very noise sensitive and may be more so at inner
eye corners. Inaccurate tangent plane determination results
in lower quality features. In order to solve this problem, we
introduce new pose invariant features, including radial dis-
tances from the origin, curvatures along the contour path, and
features derived from a Procrustean curve matching proce-
dure defined on iso-geodesic contours in 3-D space. These
new features do not compromise the iso-geodesic contours’
pose invariance advantage over other contour representa-
tions, such as iso-depth contours. Contour feature extraction
steps are explained in Sect. 5.

In our previous work (Jahanbin et al. 2008), various fea-
tures from planar contours were evaluated independently, but
no effort was made to merge them into a unified face recog-
nition system. Here, features calculated from each contour
set (nasal and inner corners of the eyes contour sets) are
independently evaluated and then combined hierarchically
to create three parallel face recognition systems (one per
fiducial). Inspired by the effectiveness of “region ensembles
approaches”, these three face recognizers that specialize dif-
ferent regions of the face are fused using both feature-level
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and match score-level fusion techniques to create a unified
face recognition algorithm with boosted performance. The
classification task is performed by a 1NN classifier using
Euclidean distance metric in LDA subspace and the results
are evaluated and compared in both authentication and identi-
fication setups. The proposed algorithms deliver very promis-
ing performance and show robustness against facial landmark
detection errors in sensitivity evaluation studies. Face recog-
nition results are presented and compared with other leading
algorithms from the literature on the same database in Sect. 7
followed by a discussion in Sect. 8.

4 Contour Extraction

In order to obtain facial contours from a facial range image,
it is necessary to define real-valued functions on that sur-
face (Milnor 1963). In this article, the normalized geodesic
distances from three detected landmarks (nose tip, inner cor-
ners of the left and right eyes) are the real-valued functions
of choice. Level-sets of each function provides closed con-
tours around the target landmark on the facial surface. In the
following subsections, the dataset used for experiments in
this article is introduced followed by an explanation of the
automatic fiducial point detection and iso-geodesic contour
extraction steps.

4.1 Texas 3-D Face Recognition Database

Our goal is to implement and evaluate face recognition algo-
rithms which are intended to operate under real-world test
conditions specified by NIST: where the only constraint is
that subjects are asked to stand at a fixed distance from the
cameras without wearing accessories such as glasses or hats
and to face the camera. This is the assumption that is likely
to be made in many applications such as access control to
secure facilities or airport screening where the face recogni-
tion system operates in the presence of a human administrator
and users are asked to have a certain degree of cooperation
with the authorities. Since in such applications laser rang-
ing would be inappropriate, NIST funded the construction of
the Texas 3-D Face Recognition Database (T3FRD) (Gupta
et al. 2010) which is the largest publicly available database
of co-registered 2-D and 3-D face images acquired using a
passive modality (i.e. optical stereo ranging).

Driven by our application scenario, we focus on the
problem of recognition (including fiducial detection, feature
extraction, statistical learning, and classification), and not
pre-processing (scaling, alignment, rotation, etc.) of the face
data. In our view, since pre-processing and recognition are
largely separate problems, algorithms to accomplish these
tasks should be tested separately. T3FRD is a large recently-
released public database of co-registered 2-D and 3-D face

images that is finding significant use. T3FRD is available to
researchers free of charge. It contains 1196 pairs of roughly
aligned, high resolution, colored portrait and range images
from 116 adult subjects. The images were captured at the
former Advanced Digital Imaging Research (ADIR) LLC
(Friendswood, TX) using a MU-2 stereo imaging system
made by 3Q Technologies Ltd. (Atlanta, GA), under con-
tract to NIST.

All the portrait and range pairs in the database are roughly
aligned with respect to a fixed generic face in the canoni-
cal frontal pose using the iterative closest point (ICP) algo-
rithm (Besl and McKay 1992). Since all of the 3-D facial
images in T3FRD are aligned by an identical procedure, fair
comparisons can be made between competing algorithms
based on recognition capability only without biases intro-
duced by pre-processing. The database include images of
male and female subjects (68 % male and 32 % female) with
ages ranging from 20 to 75 years old. About 80 % of the
images in T3FRD are from subjects younger than 40 years
of age. T3FRD contain images from different ethnicities with
the following mix: 40 % of images are from Caucasian sub-
jects, 5 % from Africans, 32 % from Asians, 22 % from East-
Indians, and the rest belong to other ethnicities. The database
contains 69 % neutral and 31 % expressive faces. Each range
and portrait pair is accompanied by a file containing informa-
tion about the subject’s gender, ethnicity, facial expression,
and manually annotated locations of 25 anthropometric facial
fiducial points. Examples of range and colored portrait pairs
are presented in Fig. 1. The left two columns are image pairs

Fig. 1 Example of face images from the Texas 3-D Face Recogni-
tion Database (a) colored portrait images (b) The corresponding range
images
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from a single subject captured at two different sessions, one
neutral and the other with an expression. The image pair in the
rightmost column is an example of a subject with an expres-
sive face and missing surface information on areas covered
with facial hair.

T3FRD complements the older publicly available Face
Recognition Grand Challenge (FRGC) 2005 database
(Phillips et al. 2005) and is a good alternative for researchers
who want to evaluate their innovative face recognition algo-
rithms without dealing with extensive pre-processing such as
head pose normalization and scaling as required by the FRGC
dataset. Of course, for free-viewing scenarios of human
faces, T3FRD is only appropriate for testing the recognition
modules. Integrated pre-processing and recognition algo-
rithms for free-viewing should be tested on FRGC. T3FRD
allows isolation of face recognition performance without
any bias introduced by choice of complicated pre-processing
schemes. It is the largest (in terms of number of images and
subjects) database that has been acquired using a stereo imag-
ing system at a high resolution of 0.32 mm along the x, y, and
z dimensions. By comparison, images in the FRGC database
were acquired using a Minolta Vivid 900/910 laser scanner
sampled at a lower average resolution of 0.98 mm along x
and y dimensions and 0.5 mm along the z dimension (Chang
et al. 2003).

Since stereo imaging captures both the shape and the por-
trait image of the face simultaneously, each range and portrait
pair are perfectly co-registered in the T3FRD. By contrast,
there was a significant time-lapse between the operation of
the laser range finder and the optical camera in the FRGC data
acquisition procedure, which caused the acquired 2-D and
3-D images in the FRGC be out of correspondence (Phillips
et al. 2005). This time-lapse also caused inconsistencies in
facial expression between the range and portrait images cap-
tured in a single subject session (Maurer et al. 2005). Since
laser scanning is not instantaneous, some of the faces in the
FRGC have been reported to be distorted due to head move-
ments during acquisition (Maurer et al. 2005). Finally, 3-D
face acquisition using laser range finders can cause emo-
tional or physical discomfort in those being scanned, and in
our view, is a modality that is highly unlikely to be deployed
often in practice at least in our application scenario. Much of
the pre-processing required to utilize the FRGC database is
unlikely to be required using a passive sensing system, such
as stereo ranging systems.

A few pre-processing steps are performed on all of the
T3FRD range images: First, extraneous background regions
that are not connected to the face are removed by detecting
the face as the biggest connected blob having non-zero range
value, and eliminating all remaining smaller blobs. Impulse
noise present in the range images are removed by median
filtering with a 3×3 square filter. Holes and areas with miss-
ing data are filled by bi-cubic interpolation. All images in

the database are of size 751 × 501. The z value in the range
images is represented using 8 bit format with closest point
to the camera having the highest value of 255. In our exper-
iments, we reduced the size of all images by a factor of 3 in
each direction to reduce computational cost, so the resulting
images used were of size 251 × 167 pixels.

4.2 Automatic Facial Landmark Detection

The automatic detection of fiducials plays an important role
in many face related applications. There are very few tech-
niques proposed in the literature that use 3-D or combination
of 2-D and 3-D facial clues for fiducial detection. In this arti-
cle, the algorithm that we proposed in (Jahanbin et al. 2008) is
used to detect three fiducials using Gabor responses extracted
from range images. This fiducials are: the nose tip (NT), the
left eye inner corner (LEIC), and the right eye inner cor-
ner (REIC). With highly competitive accuracy, this landmark
detection technique has been adopted for other approaches to
face recognition and related applications (Gupta et al. 2010;
Moorthy et al. 2010).

The local appearance around a point, x, in a range image
is encoded using a set of 40 Gabor coefficients, a Gabor “jet”,
derived by convolving the input image with a family of Gabor
kernels covering 5 spatial frequencies and 8 orientations. In
other words, a “jet” J is a set

{
J j , j = u + 8v

}
of 40 complex

Gabor coefficients obtained from a single image point. Com-
plex Gabor coefficients are represented as J j = a j exp(iφ j )

where a j (x) is the slowly varying magnitude and φ j (x) is
the phase of the jth Gabor coefficient at x.

A phase sensitive similarity metric is used to measure sim-
ilarity between any two Gabor jets:

S(J, J′) =
∑40

i=1 ai ái cos(φi − φ́i )√∑40
i=1 a2

i

∑40
i=1 ái

2
(1)

This similarity measure returns real values in the range
[−1,+1], where a value close to +1 means a high similarity
between the input jets.

An appearance modeling template, called a “Gabor
bunch”, is created for each detectable fiducial by manu-
ally marking that fiducial on a small training set contain-
ing 50 range images from the available 1196 range images
in T3FRD. Finally, Gabor jets calculated from 50 training
images at the manually marked landmarks from a specific
feature point (e.g. nose tip) are stacked together to cre-
ate a bunch representation of that fiducial. For example,
the nose tip’s bunch describes the nose tip in the range
images.

In order to automatically locate a fiducial point on a range
image which has never been seen before, the range data
enclosed by the search area of that feature point are first
convolved with the set of 40 Gabor wavelets. As a result,
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Table 1 Statistics of the Euclidean distance between the automatically
detected feature points and the manually labeled ground-truth

Fiducial Mean (mm) Std. (mm)

LEIC 1.65 1.7

REIC 1.63 1.5

NT 1.40 0.9

each pixel of the search area is represented by a “range jet”.
Next, The jets are compared to their corresponding bunch
and a similarity map is created demonstrating the similarity
between each pixel in the search area and the bunch. Fidu-
cial point detection is done by picking the pixel having the
highest similarity value.

The accuracy of the proposed fiducial detection algorithms
was evaluated using the remaining 1146 range images from
T3FRD by measuring the positional error between detected
landmarks and manually annotated ground-truth in millime-
ters (mm). Table 1 provides statistics on the positional error
occurred in the detection of LEIC, REIC, and NT. It is inter-
esting to note that each of the three fiducials of interest in
our iso-geodesic based face recognition system is detected
with very high accuracies (average positional error less than
1.65 mm). The accuracy of the utilized fiducial point detec-
tion algorithm can be visualized by Fig. 2, which shows
the search box for the left inner corner of the eye (LEIC)
on an arbitrary portrait image where the correct location of
LEIC is marked with a black dot. The radius of the blue
circle (inner circle) in is equal to 1.65 mm which is the
mean positional error of detection on LEIC using range
information (Table 1). The red circle (outer circle) has a
radius equal to mean 1.65 mm plus one standard deviation
1.7 mm.

Fig. 2 Correct location of LEIC is shown with a black dot in the search
area marked with green square. The blue circle (inner circle) shows the
mean positional error and the red circle (outer circle) marks the mean
plus one standard deviation of the positional error (Color figure online)

Fig. 3 Shortest path between the nasion point and right mouth corner
shown on an arbitrary face

4.3 Iso-Geodesic Contours

In order to extract iso-geodesic contours around LEIC, REIC,
and NT, the first step is to calculate the geodesic distance
between the landmark and any available point on the facial
surface. The geodesic distance between two points on a
surface is the length of the shortest path connecting those
two points on that surface. Figure 3 shows the shortest path
between the nasion point and a mouth corner on an arbitrary
face in the database. We define an iso-geodesic contour to
be a loci of all points on the surface having the same geo-
desic distance from a given origin. Given a facial surface (a
domain) � and a fiducial point (source point) X0, it is desir-
able to find the shortest distance between each point X ∈ �

from X0, D(X). The problem is formulated by the Eikonal
equation:

‖∇�D(X)‖ = P, D(X0) = 0 (2)

This equation describes the propagation and evolution of
a wavefront through a medium and the parameter P is a con-
stant showing the velocity of the wave propagation. An effi-
cient algorithm to solve the Eikonal equation is the “Fast
Marching” method proposed by Kimmel and Sethian (1998).
The Fast Marching Method simulates an imaginary scenario
in which a bad guy sets a fire at source point X0 at time t = 0
to a uniformly distributed forest �. The fire front advances
outwards from the source point, while firemen register the
time T (X) at which fire arrives at location X . Once a point
is touched by fire, the trees burn out and the fire never again
visits the location where it had already passed. The distance
D(X) is proportional to the reaching time D(x) = P ·T (X).
The Fast Marching Method finds the geodesic distance from
a source point to n grid points defined on the surface in O(n)

operations.
We used Peyré and Cohen’s (2006) Matlab toolbox which

is capable of performing Fast Marching on surfaces defined
on either rectangular or triangular domains to calculate geo-
desic distance maps with respect to NT, LEIC, and REIC.
Figure 4 shows an example range image along with geodesic
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Fig. 4 An example range image from the database and corresponding
geodesic distance maps. Dark blue (dark in black and white printout)
reflects shorter distance and red (light in black and white printout)
means farther distance (a) range image (b) Geodesic distance map from
NT (c) Geodesic distance map from LEIC (d) Geodesic distance map
from REIC (Color figure online)

distance maps from LEIC, REIC, and NT. The dark blue
regions (dark in black and white printout) represent smaller
distances and red (light in black and white printout) means
farther distances.

After obtaining a geodesic distance map, its values are nor-
malized with a fixed reference distance measured between
two landmarks on that subject’s face. This step is crucial to
reduce the unwanted effects that subjects’ head size vari-
ation, due to the distance variation between subjects and
scanner, has on the shape and size of the extracted con-
tours. The geodesic values in a NT geodesic distance map
are normalized by the average geodesic distances between
the nose tip and the outer eye corners of that subject. Values
in LEIC and REIC geodesic distance maps are normalized
by the average geodesic width of the subject’s eyes. Finally,
the iso-geodesic contours are extracted from normalized dis-
tance maps by finding the the boundaries of objects created
by thresholding normalized distance maps using thresholds
d = 1/3, d = 2/3, and d = 1. Figure 5 shows all iso-
geodesic contours extracted from an example range image
from T3FRD overlaid on the input range image.

Fig. 5 Example of a range image with iso-geodesic contours extracted
from around NT, LEIC, and REIC

The extracted 3-D iso-geodesic contours are next smoothed
and fitted by cubic splines and then parameterized by arc
length �:

C(�) = {x(�), y(�), z(�)}T , 0 ≤ � ≤ 1. (3)

Having access to cubic spline fits makes it easier to sample
iso-geodesic contours at any given number of points with any
desired arc length interval distribution.

5 Feature Extraction

In our earlier iso-geodesic face recognition algorithm (Jahan-
bin et al. 2008) as well as many other contour-based face
recognition algorithms in the literature (Samir et al. 2006;
Mpiperis et al. 2007; Sun and Abidi 2001), features are
extracted from the projection of contours onto a reference
plane (e.g. tangent plane at the center) because it is easier
to process planar contours. This transformation from 3-D to
planar contours results in the loss of important contour char-
acteristics and vulnerability against pose variations owing to
uncertainty in finding the reference projection plane. Here we
use simple, innovative and effective features that are directly
extracted from 3-D contours, thereby preserving the impor-
tant pose invariance quality of iso-geodesic contours.

5.1 Radial Euclidean Distances

One set of pose-invariant features that we use are the Euclid-
ean distances measured in a three-dimensional coordinate
system from the origin of the iso-geodesic contours. First,
each contour is divided into 60 intervals with equal arc-
lengths. Next, the lengths of 60 vectors connecting the ori-
gin of the contour, O(xo, yo, zo), to equal arc-length sam-
ple points, Pi (xi , yi , zi ), are organized in a feature vector,
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Fig. 6 Radial Euclidean distances between the nose tip and equal arc-
length sample points on an iso-geodesic facial contour

d = {di } , i = 1, 2, . . . , 60, encoding the shape of the iso-
geodesic contour:

di =
√

(xi − xo)2 + (yi − yo)2 + (zi − zo)2 (4)

Figure 6 shows an example facial contour extracted from the
region around the nose tip and the corresponding 60 vectors
originating from the center.

5.2 Curvatures Along the Contour

Another set of valuable contour attributes is obtained by
calculating the curvatures along the contour path. Curva-
tures are extracted using the Frenet-Serret formulas in three-
dimensional Euclidean space by first calculating unit length
tangent vectors, T, pointing in the counter-clockwise traver-
sal at each equal arc-length sample point. According to the
Frenet-Serret formulas, the curvature is

κ =
∥
∥
∥
∥

dT
d�

∥
∥
∥
∥ (5)

where � is the arc-length parameter. Figure 7 shows an exam-
ple facial contour in the region around the nose tip with tan-
gent vectors indicated along the contour by arrows.

5.3 Distances from a Procrustean Circle

A considerable amount of work in the literature has been
devoted to defining planar shape descriptors by compar-
ing them against primitive shapes, such as circle, ellipses,
and triangles (Peura and Iivarinen 1997; Rosin 2003). Here
we extend this general concept to define innovative shape
descriptors of 3-D contours as explained in Sects. 5.3–5.5.
The comparison of iso-geodesic contours against a circle in
three-dimensional Euclidean space is performed using Pro-
crustes analysis. First, a unit circle is sampled using the
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Fig. 7 Example facial contour around the nose tip and tangent vectors
along the path

same number of points present on the input contour (i.e.
60 equal arc-length sample points). Then, the unit circle
undergoes a series of shape-preserving Euclidean transfor-
mations (translation, reflection, orthogonal rotation, and scal-
ing) to best conform to the input contour by minimizing
the sum of squared distances between corresponding points.
Finally, Euclidean distances measured between each point on
the iso-geodesic contour, Pi (x pi , ypi , z pi ), i = 1, 2, . . . , 60
, and the transformed circle points, Ci (xci , yci , zci ), i =
1, 2, . . . , 60, are collected in a 60 dimensional feature vector
d = {di } , i = 1, 2, . . . , 60 where

di =
√

(x pi − xci )2 + (ypi − yci )2 + (z pi − zci )2 (6)

Figure 8 shows an example facial contour in the region
around the nose tip with arrows indicating the distance
between corresponding points on the contour and the Pro-
crustean fitted circle.
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Fig. 8 Example facial contour around the nose tip with arrows show-
ing the distance between corresponding points on the contour and the
Procrustean fitted circle
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5.4 Distances from Procrustean Ellipses

Another class of geometrical shapes commonly used in
shape analysis comparisons is the ellipsoid family (Peura
and Iivarinen 1997; Rosin 2003), which possess a higher
degree of freedom as compared to circles by allowing elon-
gation. Comparison and approximation of a planar contour
with a set of ellipses is the fundamental idea behind Ellip-
tical Fourier Transforms (EFT) (Kuhl and Giardina 1982).
Here, features are obtained by fitting a horizontal and a

vertical ellipse with eccentricity equal to ε =
√

3
2 to the

input contour using Procrustes analysis. First, the ellipse
(vertical or horizontal) is sampled with the same number
of points as the input contour (i.e. 60 equal arc-length sam-
ple points). The ellipse sampled at an ordered set of points
is transformed by Procrustes analysis to best conform to
the input contour by minimizing the sum of squared dis-
tances between corresponding points. Finally, Euclidean dis-
tances measured between each point on the iso-geodesic con-
tour, Pi (x pi , ypi , z pi ), i = 1, 2, . . . , 60, and the transformed
ellipse sample points, Ei (xei , yei , zei ), i = 1, 2, . . . , 60, are
collected in a 60-dimensional feature vector d = {di } , i =
1, 2, . . . , 60 where

di =
√

(x pi − xei )2 + (ypi − yei )2 + (z pi − zei )2 (7)

Figure 9 shows an example facial contour around the nose
tip with arrows showing the distance between corresponding
points on the contour and a Procrustean fitted ellipse.

5.5 Procrustes Scales and Errors

From each Procrustes analysis in Sects. 5.3 and 5.4, two addi-
tional features can be obtained, the fitting scale and the resid-
ual error. Combining circular and elliptical Procrustes analy-

50

100

150

200

100

150

200

250

300
150

160

170

180

190

200

210

X
Y

Z

Fig. 9 Example facial contour around the nose tip with arrows show-
ing the distance between corresponding points on the contour and a
Procrustean fitted ellipse

ses, a six-dimensional feature vector comprised of circular
scale, circular residual error, horizontal elliptical scale, hor-
izontal elliptical residual error, vertical elliptical scale, and
vertical elliptical residual error is collected from each con-
tour. Intuitively, the elliptical scales and residual errors are
indications of elongation in the vertical and horizontal direc-
tions. Circular scales and residual errors reflect the compact-
ness and roundness of the contours.

6 Performance Evaluation Methodology and Data

We combine iso-geodesic contour features in a hierarchical
scheme to create a unified face recognition system (Sect. 7).
First, each feature category is evaluated around the fiducial
points and the results are reported independently. Next, fea-
tures extracted from around the same landmark are fused to
create three parallel face recognition systems (one per fidu-
cial). Finally, these three face recognizers are merged to cre-
ate a unified face recognition system. The details of this hier-
archical scheme and the evaluation results at each stage are
discussed in Sect. 7.

In this section, the data and the methodology used to evalu-
ate the performance of the proposed algorithms are described.
In Sect. 6.1, the breakdown of T3FRD into training and test-
ing sets is explained. Section 6.2 explains how the perfor-
mance of a face recognition system is measured in identity
verification and identification scenarios according to estab-
lished face recognition protocols (Moon and Phillips 1998).
The classification task is performed by a 1NN classifier using
Euclidean distance metric in LDA subspace as explained in
Sect. 6.3.

6.1 Face Recognition Data

In order to evaluate the verification and identification perfor-
mance of the proposed features, the 1196 range images from
116 subjects present in T3FRD were partitioned into dis-
joint training and testing sets. The training set contained 270
range images from 18 subjects (15 per subject). The training
set was used by the stepwise-LDA (Sharma 1995) to select
the most discriminative subset of features from raw concate-
nated features. Also, the training set was used to design 1NN
classifiers using Euclidean distance metric in LDA subspace.
The test set was further divided into a gallery set and a probe
set. The gallery set contained 103 range images from 103
individuals (1 image per subject) who have at least 2 range
images in the test set. The probe set has 810 range images
from the 103 enrolled subjects in the gallery set, where the
number of range images per subject varies, with a minimum
of 1 image for some subjects to maximum of 77. There are
13 subjects in T3FRD with only 1 range image per subject,
which are included as imposters in the probe set.
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6.2 Verification and Identification Tasks

In verification scenarios (e.g. access control systems), a face
recognition system compares the retrieved features of the
claimed identity (from the gallery set) with the currently cap-
tured features of the user and declares a match if features are
more similar than a given threshold. The performances of
face recognition algorithms in the verification experiment are
usually described by the receiver operation curve (ROC). The
ROC curve plots the false acceptance rate (FAR) against the
false rejection rate (FRR) for various operating thresholds.
Two quantitative measures of verification performance, the
equal error rate (EER) and area under the curve (AUC), are
accepted measures of overall face recognition performance
that we have adopted (Egan 1975). Both the AUC and EER
performance metrics of a face recognition system approach
zero as the system approaches an ideal.

In the Identification scenario, the features of the subject
are compared against the enrolled models in the gallery set
and the results are ranked based on the similarity scores.
The identification performance of the proposed algorithms
are expressed by the cumulative match characteristic (CMC)
curves and the rank 1 recognition rates (RR1) (Grother et al.
2003).

6.3 Euclidean Distance Decision Rule in LDA Subspace

We use Fisher’s LDA to project features selected by stepwise-
LDA to lower-dimensional feature spaces that maximize the
between-class scatter, Sb, while minimizing the within-class

scatter, Sw. The projection directions are learned only from
the training portion of the dataset. In the evaluation phase,
features from faces in the testing set are first projected onto
the LDA subspace using the projection directions learned
in the training session. The authentication and identification
tasks are performed based on the measured Euclidean dis-
tances in the lower dimensional LDA subspace between cur-
rently captured features and features retrieved from people
enrolled in gallery.

7 Results

In order to construct a unified 3-D face recognition system,
the multiple feature types (Sect. 5) collected around 3 land-
marks at 3 different geodesic radii are hierarchically fused
as illustrated by Fig. 10. In this hierarchy, the first stage of
fusion takes place by merging one type of feature from con-
tours of all radii around each fiducial origin (e.g. curvatures
from NT contours 1–3 as shown in Fig. 10). A performance
evaluation of the first fusion stage, called “Contour Scale
Fusion”, are presented in Sect. 7.1. In the next stage of the
hierarchy, “Fiducial Scale Fusion”, all of the fused features
collected around each fiducial point are merged into a sin-
gle concise feature vector (one per fiducial) specialized to
describing the immediate vicinity of that fiducial (Sect. 7.2).
At the highest stage of the hierarchy, “Global Scale Fusion”,
three parallel face recognition systems are fused by feature-
level and match score-level techniques into two alternative
unified face recognition systems.

NT Curvature Contour#1

NT Curvature Contour#2
NT Curvature Contour#3

Contour Scale Fusion Classifier

Concatanation
+

Normalization

Stepwise LDA

Feature Selection
Euc. Dist.

Fiducial Scale Fusion Classifier

NT Fused Curvatures 
Concatanation

+
Normalization

Stepwise LDA

Feature Selection

NT Fused Radial Euclidean Dist.
NT Fused Circle Dist.

      Global Scale Fusion 
Using Feature-Level Fusion Classifier

Concatanation
+

Normalization

Stepwise LDA

Feature Selection

NT Fused Features
LEIC Fused Features
REIC Fused Features

   Global Scale Fusion
Using Score-Level Fusion

NT Match Score

LEIC Match Score

REIC Match Score

Weighted Sum

Euc. Dist.

Euc. Dist.

Results

Results

Results

Results

Fig. 10 The proposed hierarchical feature fusion scheme
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7.1 Contour Scale Fusion

Features from the same category calculated around each fidu-
cial are merged using a feature-level fusion technique (Ross
et al. 2006). The feature-level fusion technique used in this
stage, as well as in higher stages of the proposed hierar-
chy, are illustrated in Fig. 10. First, all collected features
are concatenated and normalized to a common range using
min–max normalization. The parameters of the normaliza-
tion are learned from the training set. The normalization
step is important to prevent features having greater numeric
ranges from dominating those having smaller ranges. Finally,
stepwise-LDA (Sharma 1995) is applied to reduce the dimen-
sionality of the raw feature vectors by picking the most
discriminative subset of features. The stepwise-LDA was
accomplished with the STEPDISC procedure in SAS soft-
ware (SAS Institute, Cary, NC). Stepwise-LDA feature selec-
tion starts with an empty set of features. At each step, the best
feature that is not currently in the set is added to the set if
its significance level is higher than the “entry significance
level”. At each step, features from the selected set that are no
longer among the best are removed if their significance level
is below the “exit significance level”. Feature significance
levels at each step are calculated based on Wilks’ lambda
statistic (Sharma 1995). The procedure terminates when no
more features can be added or removed based on the specified
significance level for entry and removal of features. In our
implementation, both significance levels are set to 0.05. The
subset of features selected by stepwise-LDA have reasonably
low dimensionality and can be used by a 1NN classifier using
Euclidean distance metric in LDA subspace as explained
in Sect. 6.3, without facing the “small sample size” prob-

lem (Duda et al. 2001). The dimensionality of the features
selected by stepwise-LDA is not known a priori and it dif-
fers from one category of features (e.g. Radial Distance from
LEIC) to another (e.g. NT Curvatures). We have observed a
range of about 30–50 features being selected from different
categories.

The verification and identification performance of con-
tour features collected around automatically detected LEIC
are displayed by CMC and ROC curves in Fig. 11. Table 2
presents the EER, AUC, and RR1 values for each feature
category. Among the features collected around the LEIC,
the “Horizontal Ellipse Procrustes Distances” have the best
verification performance closely followed by the “Vertical
Ellipse Procrustes Distances” and the “Circle Procrustes Dis-
tances”. After these three leading features, a second tier
of features is identifiable which consists of the “Procrustes
Scales & Errors” and the “Radial Distances from LEIC”.
Finally, the poorest performing features around the LEIC
are the “Curvatures along the contour”. The same trend
is observed for the identification performance of features
extracted around the LEIC, where the “Horizontal Ellipse
Procrustes Distances” has the best performance (R R1 =
90.94 %) followed by the “Vertical Ellipse Procrustes Dis-
tances” and the “Circle Procrustes Distances” (R R1 =
89.13 % and R R1 = 87.92 %, respectively). The only excep-
tion is that the lowest performing feature from the LEIC in
identification task is the “Procrustes Scales & Errors” with
R R1 = 66.93 %.

Figure 12 and Table 3 present the identification and ver-
ification performance of features collected around the auto-
matically detected REIC. Similar to LEIC, three tiers of fea-
tures are identifiable based on their verification performance
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Fig. 11 Performance evaluation of Contour Scale Fused features collected around automatically detected LEIC: (a) ROC curves showing the
verification accuracies (b) CMC curves showing the identification performance
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Table 2 The observed EER, AUC, and RR1 values for automatically
detected LEIC features

Algorithm EER (%) AUC RR1 (%)

Curvatures 13.20 0.0645 71.26

Radial Distance from LEIC 10.01 0.0367 75.36

Procrustes Scales and Errors 8.76 0.0369 66.93

Circular Procrustes Dist. 5.80 0.0192 87.92

Verti. Elliptical Procrustes Dist. 5.24 0.0148 89.13

Horiz. Elliptical Procrustes Dist. 4.60 0.0132 90.94

(Fig. 12a; Table 3). In the highest performing tier, the “Hor-
izontal Ellipse Procrustes Distances” have the best verifi-
cation performance closely followed by the “Vertical Ellipse
Procrustes Distances” and the “Circle Procrustes Distances”.
The “Procrustes Scales & Errors” and the “Radial Distances
from REIC” are in the second tier. Finally, the “Curvatures
along the contour” from REIC supplies the worst perfor-
mance. The same general trend is observed for the iden-
tification performance of features extracted around REIC,
where the “Horizontal Ellipse Procrustes Distances” has the
best performance (R R1 = 88.04 %) followed by the “Verti-
cal Ellipse Procrustes Distances” and the “Circle Procrustes
Distances” (R R1 = 87.07 % and R R1 = 84.54 %, respec-
tively). The lowest performing feature from REIC in iden-
tification task is again the “Curvatures along the contour”
(R R1 = 64.97 %).

Figure 13 and Table 4 display and summarize the per-
formance evaluation of features collected around automat-
ically detected NT. For comparison purposes, two baseline
face classifiers, the Eigensurfaces (Russ et al. 2006; Hesher

Table 3 The observed EER, AUC, and RR1 values for automatically
detected REIC features

Algorithm EER (%) AUC RR1 (%)

Curvatures 14.23 0.0909 64.97

Radial Distance from REIC 9.03 0.0348 78.62

Procrustes Scales and Errors 8.70 0.0363 67.87

Circular Procrustes Dist. 6.55 0.0223 84.54

Verti. Elliptical Procrustes Dist. 6.14 0.0213 87.07

Horiz. Elliptical Procrustes Dist. 5.92 0.0178 88.04

2003) and the Fishersurfaces (Gokberk et al. 2005; Heseltine
et al. 2004), were implemented by applying PCA and LDA to
the range images after performing the alignment proposed by
Russ et al. (2006). The performance of these baseline algo-
rithms are presented in Fig. 14 and Table 5. In the verification
task, the “Radial Distances from NT” and the “Horizontal
Ellipse Procrustes Distances” present notable performance
among the features computed around automatically detected
NT. The “Vertical Ellipse Procrustes Distances”, the “Circle
Procrustes Distances’, and the “Procrustes Scales & Errors”
closely follow, while again the “Curvatures along the con-
tour” has the poorest performance. In the identification evalu-
ation of NT features, the “Radial Distances from NT” and the
“Horizontal Ellipse Procrustes Distances” are the best per-
forming NT features (R R1 = 97.82 % and R R1 = 96.98 %,
respectively).

It is interesting to observe that some of the features col-
lected around NT, such as the “Radial Distances from NT”,
the “Horizontal Ellipse Procrustes Distances”, and the “Ver-
tical Ellipse Procrustes Distances” perform better than the
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Fig. 12 Performance evaluation of Contour Scale Fused features collected around automatically detected REIC: (a) ROC curves showing the
verification accuracies (b) CMC curves showing the identification performance
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Fig. 13 Performance evaluation of Contour Scale Fused features collected around automatically detected NT: (a) ROC curves showing the
verification accuracies (b) CMC curves showing the identification performance

Table 4 The observed EER, AUC, and RR1 values for automatically
detected NT features

Algorithm EER (%) AUC RR1 (%)

Curvatures 8.16 0.0345 80.79

Procrustes Scales and Errors 3.18 0.0042 88.16

Radial Distance from NT 2.17 0.0033 97.82

Circular Procrustes Dist. 3.18 0.0037 95.41

Verti. Elliptical Procrustes Dist. 3.10 0.0047 96.13

Horiz. Elliptical Procrustes Dist. 2.64 0.0029 96.98

benchmark Eigensurfaces and Fishersurfaces in both identi-
fication and verification evaluations, because iso-geodesic
contours are more robust against the pose variations and
facial expression changes present in T3FRD. This obser-
vation becomes more striking when it is considered that
the total number of points on NT iso-geodesic contours are
only a very small fraction of data used by benchmark algo-
rithms. Another important observation is that any feature
from around NT outperforms its LEIC and REIC counter-
part in terms of the EER, AUC, and RR1 performance mea-
sures. This phenomena can be explained by the fact that iso-
geodesic contours cover a larger area of the face while the
LEIC and REIC contours are limited to the small eye socket
area (Fig. 5).

7.2 Fiducial Scale Fusion

In the “Fiducial scale Fusion” stage of the hierarchy, all of
the features combined in the previous stage (“Contour Scale
Fusion”) are merged into three concise feature sets (one per

automatically detected fiducial) specialized to describe the
immediate vicinity of that fiducial. The fusion technique used
in this stage is the same feature-level fusion scheme used
in the “Contour Scale Fusion”. First, all the fused features
from a fiducial are concatenated and normalized to a com-
mon range using min–max normalization. Stepwise-LDA is
applied to perform the final step of the fusion by keeping the
most discriminative subset of features while discarding the
rest.

The identification and verification performance of the face
recognizers at this stage are presented in Fig. 14 and Table 5.
The “NT” fused features managed to achieve E E R = 1.40
and AUC = 0.00230 in the identification task and R R1 =
98.18 %. By comparing this result with the results in Fig. 13
and Table 4, it is clear that the NT face recognizer per-
forms better than any individual NT feature contributing to
the system. Also comparing the NT face recognizer’s perfor-
mance with the benchmark Fishersurfaces and Eigensurfaces
(Fig. 14; Table 5), it is clear that the NT face recognizer per-
forms far better than the benchmarks. Similarly the LEIC
and REIC attain performance measures (E E R = 3.23 %,
AUC = 0.0093, R R1 = 91.06 %) and (E E R = 3.97 %,
AUC = 0.0120, R R1 = 90.82 %) that are greatly improved
compared to their individual constituent features. The per-
formance of the LEIC and REIC fused face recognizers are
comparable to the Fishersurfaces algorithm and much better
than Eigensurfaces.

7.3 Global Scale Fusion

Finally, at the highest stage of the proposed hierarchy, the
NT, LEIC, and REIC classifiers are combined to create a
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Fig. 14 Performance evaluation of the “Fiducial Scale Fusion”, the “Global Scale Fusion”, and the benchmarks with automatically detected
landmarks: (a) ROC curves showing the verification accuracies (b) CMC curves showing the identification performance

Table 5 The observed EER, AUC, and RR1 values for the “Fiducial
Scale Fusion”, the “Global Scale Fusion”, and the benchmarks with
automatically detected landmarks

Algorithm EER (%) AUC RR1 (%)

LEIC 3.23 0.0093 91.06

REIC 3.97 0.0120 90.82

NT 1.40 0.0023 98.18

Eigensurfaces 6.85 0.0293 91.90

Fishersurfaces 3.44 0.0143 95.65

Match score-level 1.09 0.0010 99.51

Feature-level 0.44 0.0003 99.51

single face recognition system. Two commonly used classi-
fier fusion techniques, the feature-level and the match score-
level, are implemented independently and their performances
are compared. The feature-level fusion scheme used in this
stage is the same as the previous stages. Features selected by
NT, LEIC, and REIC face recognizers are concatenated and
normalized. Stepwise-LDA is utilized to perform the final
feature-level fusion by selecting the the most discriminating
subset of features while discarding the rest.

Many different match score-level fusion techniques are
proposed in the literature to integrate information available
at the output of multiple classifiers into a more accurate uni-
fied system (Ross et al. 2006). In this study, we use the
weighted sum approach to combine the following classifiers:
(1) NT, (2) LEIC, (3) REIC. The match scores that are fused
in this study are the Euclidean distances, di , i = 1, 2, 3,
measured by each classifier. However, a combination of dis-
tances (match scores) is only meaningful when the distances

are in the same range. We have used min–max normaliza-
tion to transform distances obtained from each classifier to a
common range. The weighted sum fusion of distances, D f ,
is then calculated:

D f =
3∑

j=1

w j ∗ dn
j (8)

where dn
j and w j are the normalized distance and weight of

the jth classifier, respectively, with the condition
∑3

j=1 w j =
1. Each classifier’s weight is a function of its performance
estimated using the training data:

w j = 1 − (F AR j + F R R j )

3 − ∑3
i=1(F ARi + F R Ri )

(9)

where F ARi and F R Ri are the false acceptance and false
rejection rates of the ith classifier. We have used constant
E E Ri instead of F ARi and F R Ri which are threshold
dependent. The weights calculated for “NT”, “LEIC”, and
“REIC” are w1 = 0.3437, w2 = 0.3307, and w3 = 0.3255,
respectively, indicating the importance and contribution of
each classifier in this fusion.

Figure 14 and Table 5 summarize the performance of the
alternative fusion schemes at the final stage, and compare
them with each individual feature set or classifier contribut-
ing to the fusion. The match score-level fusion improves
the verification performance measures to E E R = 1.09 %,
AUC = 0.0010 and increases the identification performance
to R R1 = 99.51 % which is better than the best performing
individual classifier in the union (NT with E E R = 1.40 %,
AUC = 0.0023, R R1 = 98.18 %). However, feature-level
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fusion leads to remarkably better performance: E E R =
0.44 %, AUC = 0.0003, R R1 = 99.51 %.

The better performance of feature-level fusion is explain-
able by the fact that feature-level fusion takes place before
classification, when richer information about the input pat-
terns is available as compared to match score-level fusion
which is a post-classification fusion based on abstract infor-
mation about the inputs. In general, fusion techniques that
integrate information at earlier stages of processing are
believed to be more effective than systems which perform
integration at a later stage (Ross et al. 2006). The final feature-
level fused classifier achieve excellent performance with
E E R = 0.44 % and AUC = 0.0003 and R R1 = 99.51 %.

7.4 Comparison to Other Works

Table 6 and Fig. 15 compare the results of the proposed
iso-geodesic Procrustean contour based 3-D face recogni-
tion algorithm with several state-of-the-art algorithms that

Table 6 The observed EER, AUC, and RR1 values for algorithms eval-
uated on the Texas 3-D Face Recognition Database

Algorithm EER (%) AUC RR1 (%)

Feature-level fused iso-geodesuc 0.44 0.0003 99.51

“Anthroface 3D” (Gupta et al. 2010) 1.65 0.0014 97.3

Warped Examples (Zou et al. 2007) 2.5 NA NA

McKeon and Russ (2010) 0.42 0.0007 99.86

Mahoor and Abdel-Mottaleb (2009) 1.39 0.0023 98.19

Queirolo et al. (2010) 0.46 0.0003 NA

have been evaluated on T3FRD. By comparison, the state-
of-the-art system in Gupta et al. (2010) proposed a face recog-
nition algorithm based on geodesic and 3-D Euclidean dis-
tances between 10 automatically annotated anthropometric
facial fiducial points (“Anthroface 3D”). The performance
of Anthroface 3D was also evaluated on T3FRD with com-
parable size training, probe, and gallery sets. The highest
performance reported by Gupta et al. (2010) is achieved in
the recognition of neutral faces yielding E E R = 1.65 %
and AUC = 0.0014 in a verification experiment and
R R1 = 97.3 % in an identification experiment. Our pro-
posed iso-geodesic Procrustean contours based face recog-
nition approach has significantly better performance than the
algorithms in Gupta et al. (2010).

Zou et al. (2007) introduced “warping coefficients”, a 3-
D face recognition system based on warped range images.
In this algorithm, a number of selected range images con-
stitute a set of example faces, while another range image is
selected as a “generic face”. The generic face is then warped
to match each of the example faces. Each such warp is speci-
fied by a vector of displacement values. In the feature extrac-
tion phase, when the algorithm is provided with a new range
image, the generic face is warped to match it. The geometric
transformation used in this warping can be approximated as
a linear combination of example face warping vectors. The
coefficients in the linear combination are used as features
and passed to a Mahalanobis-distance based classifier. The
“warping coefficients” achieved E E R = 2.5 % when eval-
uated using a subset of range images available in T3FRD.
AUC and RR1 were not reported in Zou et al. (2007).

Mahoor and Abdel-Mottaleb’s (2009) contour-based algo-
rithm which recognizes faces by comparing their ridge lines
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Fig. 15 Performance comparison between the proposed iso-geodesic contour-based algorithm and the state-of-the-art algorithms from literature:
(a) ROC curves showing the verification accuracies (b) CMC curves showing the identification performance
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using the ICP algorithm was evaluated on T3FRD with the
same probe and gallery partitions. The ridge line algorithm,
which is one of the leading contour-based algorithms eval-
uated on the FRGC database, achieves E E R = 1.39 % and
AUC = 0.0023 in a verification experiment, and R R1 =
98.19 % in an identification experiment.

Queirolo et al. (2010) proposed a 3-D face recognition
algorithm founded on the ”surface matching” and ”region
ensembles” concepts. In this framework, four regions are
segmented on each face around automatically detected land-
marks. When comparing two faces, their corresponding seg-
mented regions are iteratively registered using a Simulated
Annealing (SA) optimization that maximizes their Surface
Interpenetration Measure (SIM). The SIM values corre-
sponding to the matchings of four regions: circular and ellip-
tical areas around the nose, forehead, and entire face are
eventually summed up into a similarity score between two
faces. Simulated Annealing is a stochastic algorithm for local
search that when used in surface registration, is more likely
than the conventional ICP to find the global optimum solu-
tion, but it is much slower than the ICP (Queirolo et al. 2010).
Queirolo et al.’s (2010) face recognition algorithm, which is
one of the leading performers on the FRGC database, was
evaluated in verification mode with the exact same probe
and gallery sets on T3FRD and yielded E E R = 0.46 %
and AUC = 0.0003 (Table 6; Fig. 15) which is slightly
outperformed by the EER and AUC achieved by the algo-
rithm proposed in this work. However, Queirolo et al.’s
(2010) algorithm had slightly better performance at lower
F AR ranges. Similar to other iterative surface matching tech-
niques (e.g. ICP), the main drawback of this algorithm is
that an optimization-based comparison should be performed
between the probe face and every face in the gallery that
becomes computationally prohibitive when performing iden-
tification tasks on large databases.

Queirolo et al. (2010) used a computer with the following
configuration: Linux O.S., Intel Pentium D 3.4GHz, cache
of 2MB and 1GB of RAM and found the average execu-
tion time to be 4 seconds when comparing two faces using
their proposed algorithm. As stated by Queirolo et al. (2010),
Simulated Annealing’s excessive time consumption limits
the applicability of their proposed algorithm to verification
application where the probe face is only compared to a sin-
gle gallery image. In order to recognize a face among 103
subject in T3FRD, it would require 4 ∗ 103 seconds equal
to 6 minutes and 52 seconds. As clearly stated by the authors
in Queirolo et al. (2010), this algorithm is only viable for ver-
ification applications and is not applicable in identification
applications where a face will be compared with hundreds
of other faces. For example, identifying a probe face from
among 103 registered subjects in T3FRD will require close
to 7 minutes (Queirolo et al. 2010). By contrast, the algorithm

proposed in this work was able to execute the same identifica-
tion task on average in 3 seconds while running on a computer
with: Windows XP OS, Intel Core 2 CPU 2.00GHz, 2.0 GB
of RAM. This 3 seconds includes: landmark detection, iso-
geodesic contours extraction, pose invariant feature extrac-
tion, and comparison with 103 registered subjects using a
Matlab implementation that was not optimized.

McKeon and Russ’s (2010) 3-D Fisherface Region Ensem-
bles method was also evaluated with the exact same probe
and gallery sets on T3FRD. The proposed algorithm in McK-
eon and Russ (2010) combines a statistical learning approach
with the region ensembles paradigm. In McKeon and Russ
(2010), 22 regions are defined on the human face where a 3-D
Fisherface (PCA followed by LDC) is applied to each region
as the core statistical discriminator. The input features to
each regional Fisherface are the concatenated (x, y, z) coor-
dinates of all of the points in that region. In the training stage
of this algorithm, sequential forward search (SFS) (Sharma
1995) is used to select the most discriminating regional Fish-
erfaces among the 22 candidates. The main drawback of the
3-D Fisherface Region Ensembles algorithm (McKeon and
Russ 2010) compared to the algorithm proposed in this work
is that McKeon and Russ’s (2010) region selection requires a
considerable number of training samples. McKeon et al. had
to use the entire T3FRD sample set in addition to faces from
FRGC 2.0 to train their algorithm. The performance of this
algorithm is presented in Table 6 and Fig. 15. The 3-D Fisher-
face Region Ensembles method, which is currently among the
top performing algorithms evaluated on the FRGC database,
yielded E E R = 0.42 % and AUC = 0.0007 in a verification
experiment, and R R1 = 99.86 % in an identification experi-
ment. This result is the best so far reported on T3FRD, how-
ever, it is achieved by incorporating all the T3FRD images
at the training stage as compared to our approach, which
produces comparable performance when trained with only
270 training images. Since the gallery and probe set used by
McKeon et al. completely overlap with the training set, their
reported results are biased.

Comparing the performances of other algorithms evalu-
ated on T3FRD (Table 6; Fig. 15) with the performance of the
proposed iso-geodesic contour-based algorithm, it is evident
that defining appropriate contours, extracting pose invari-
ant features directly from 3-D contours, carefully analyzing
discriminative features around each landmark, and eventu-
ally merging an ensemble of face recognizers from different
regions into a unified face recognizer yields a contour-based
algorithm that outperforms other contour-based algorithms
and that is competitive in terms of recognition performance
as tested on T3FRD with a state-of-the-art algorithm that
delivers top performance on T3FRD and FRGC, but which
uses a much denser representation of the 3-D structure of the
face.
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7.5 Robustness Evaluations

In Sects. 7.1–7.3, the performance of the proposed face
recognition algorithm was studied at different stages of the
fusion hierarchy under the assumption that the fiducial points
were automatically detected using range Gabor descriptors.
The performance evaluations were conducted using a probe
set containing both expressive and neutral faces. In the fol-
lowing subsections, we discuss the effects of automatic land-
mark detection on overall face recognition performance. We
also evaluate the robustness of the proposed face recogni-
tion algorithms against facial expression changes. Finally,
we assess the generalization capabilities of the proposed face
recognition model by using test and training sets that are sub-
ject independent.

7.5.1 Sensitivity to Fiducial Detection Errors

In previous subsections, the performances of the algorithms
derived from our proposed iso-geodesic face recognition
models were studied at different levels of the hierarchy under
the assumption that the fiducial points were automatically
detected. In order to assess the effects of the “fiducial detec-
tion” errors on the performance of face recognition, the algo-
rithms were re-evaluated using the same probe and gallery
sets when the landmarks are pinpointed manually. Figure 16
and Table 7 summarize the face recognition results achieved
in the absence of landmarking errors. Comparing the results
in Tables 5 and 7, it is evident that most of the performance
measures indicate a slight degradation by fiducial-scale face
recognizers due to “automatic detection” landmarking errors.

Table 7 The observed EER, AUC, and RR1 values for the “Fiducial
Scale Fusion” and the “Global Scale Fusion” with manually detected
landmarks

Algorithm EER (%) AUC RR1 (%)

LEIC 3.40 0.0075 91.67

REIC 3.76 0.0095 91.18

NT 1.21 0.0016 98.48

Match score-level 0.94 0.0009 99.03

Feature-level 0.36 0.0001 99.64

These performance declines eventually take a toll on the per-
formance of ensemble face recognizers that combine infor-
mation from different regions of the face. In the absence of
landmarking errors, the feature-level fused face recognizer
achieves E E R = 0.36 % and AUC = 0.0001 in the verifi-
cation test, and a rank one recognition rate as high as 99.64 %
in the identification test. These results can be considered as
an upper bound for the performance of the proposed algo-
rithms. Although the performance of the proposed feature-
level fused recognizer reduces when supplied with landmark-
ing inaccuracies, this reduction is marginal.

7.5.2 Sensitivity to Facial Expression

In order to evaluate the robustness of the algorithms derived
from our proposed iso-geodesic face recognition models
against facial expression variations, an experiment was con-
ducted in which subjects in T3FRD are enrolled in the
gallery set by a neutral range image, and the probe set con-
tains only expressive range images. The results of expressive
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Fig. 16 Performance evaluation of the “Fiducial Scale Fusion” and the “Global Scale Fusion” with manually detected landmarks: (a) ROC curves
showing the verification accuracies (b) CMC curves showing the identification performance
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Fig. 17 Performance evaluation of the “Fiducial Scale Fusion” and the “Global Scale Fusion” in recognizing “expressive” faces: (a) ROC curves
showing the verification accuracies (b) CMC curves showing the identification performance

Table 8 EER, AUC, and RR1 values for the “Fiducial Scale Fusion”
and the “Global Scale Fusion” in recognizing “expressive” faces

Algorithm EER (%) AUC RR1 (%)

LEIC 3.72 0.0098 89.51

REIC 4.58 0.0135 89.23

NT 2.08 0.0024 96.83

Match score-level 1.57 0.0013 98.57

Feature-level 0.54 0.0004 98.73

face recognition experiments are summarized in Fig. 17 and
Table 8. Comparing the results in Tables 5 and 8 , it is evi-
dent that the fiducial-scale face recognizers perform less reli-
ably when subjected to expressive faces. This performance
slip is also evident in the performance of the final global-
scale face recognizers as the observed verification equal error
rate increase from E E R = 0.44 % to E E R = 0.54 % and
the rank one recognition rate falls from R R1 = 99.76 % to
R R1 = 98.73 %.

Although the performance of the proposed iso-geodesic
based face recognition system degrades when analyzing
expressive faces, this reduction is marginal. The proposed
face recognizer (at the global scale fusion) still achieves
better or comparable performance in recognizing expres-
sive faces than do other algorithms in recognizing combi-
nations of expressive and neutral faces from the same data-
base (Table 6). The robustness of the proposed algorithm
against facial expression changes can be explained by the
fact that this algorithm is founded on local features that are
mostly extracted from rigid regions of the face that are less
deformable with facial expression variations (nose region

and eye sockets). In addition, statistical learning techniques
are employed to select the most discriminating and expres-
sion invariant features for each region and discard expres-
sion sensitive ones. Finally, the region ensemble approach
is implemented using a hierarchical scheme that merge face
recognizers from different regions of the face into a robust
face recognition algorithm. Region ensemble approaches are
known for being robust against facial expression changes and
occlusion.

7.5.3 Generalization Capabilities

In order to assess the generalization capabilities of the pro-
posed iso-geodesic contour-based face recognition models,
performance evaluations were conducted on a “training-
subject independent” testing set that does not contain any
images from the 18 subjects present in the training phase
(e.g. stepwise-LDA training). After removing training depen-
dent subjects, the “training subject independent” testing set
contains 300 range images from 85 subjects. The results of
these generalization evaluation experiments are summarized
in Fig. 18 and Table 9. Comparing the results in Tables 5
and 9, it is evident that the performances of the fiducial-scale
face recognizers and eventual global-scale face recognizers
show only a slight decline. These results confirm that the pro-
posed training scheme is not biased towards subjects present
in the training set.

8 Conclusion and Future Work

In this article we introduced a novel 3-D face recognition
algorithm based on iso-geodesic contours and Procrustean
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Fig. 18 Performance evaluation of the “Fiducial Scale Fusion” and the “Global Scale Fusion” evaluated using training-subject independent test
set: (a) ROC curves showing the verification accuracies (b) CMC curves showing the identification performance

Table 9 EER, AUC, and RR1 values for the “Fiducial Scale Fusion”
and the “Global Scale Fusion” evaluated using training-subject inde-
pendent test set

Algorithm EER (%) AUC RR1 (%)

LEIC 3.64 0.0095 90.66

REIC 4.20 0.0125 89.99

NT 1.72 0.0025 96.49

Match score-level 1.33 0.0011 98.79

Feature-level 0.50 0.0004 99.09

analysis around three automatically detected fiducials. One
important characteristic of iso-geodesic contours is that they
remain unchanged with rigid transformations of the face
(pose invariance). Innovative feature sets were defined and
extracted from the iso-geodesic contours in 3-D Euclidean
space. By directly extracting features from 3-D contours
rather than from their projections onto a reference plane, the
important pose-invariance quality of the iso-geodesic con-
tours remains intact. Various Procrustean analysis based fea-
ture sets collected around three fiducials at varying radii were
hierarchically fused into a unified face recognition algorithm
with boosted performance. Classification was performed by
a 1NN classifier using Euclidean distance metric in LDA sub-
space and the results evaluated and compared in both verifi-
cation and identification setups on the Texas 3-D Face Recog-
nition Database containing 1196 range and colored texture
images of expressive and neutral faces.

The evaluation results indicate that the integrated features
increasingly become discriminative by moving from the raw
features to higher stages of the fusion hierarchy. At the high-

est stage of the hierarchy two alternative fusion schemes,
feature-level and match score-level, are employed to integrate
the parallel NT, LEIC, and REIC face recognizers into uni-
fied face recognition systems. The evaluation results indicate
that although both fusion schemes are successful in improv-
ing the recognition performance compared to constituting
units, feature-level fusion achieves significantly better per-
formances by having access to richer sources of informa-
tion about the input patterns. Comparison of identification
and verification accuracies achieved by the proposed algo-
rithm with state-of-the-art algorithms evaluated on the same
database highlights the effectiveness of the proposed iso-
geodesic contours for representing the facial surface. We
have shown that by using well defined yet simple features
extracted from iso-geodesic contours, exceptionally compet-
itive performances are achievable. Although our target appli-
cation operates under quite specific conditions, we envision
that feature-efficient contour-based algorithms such as the
one described here could eventually be developed for the
free-viewing scenario.

As a side note, The above mentioned hierarchical scheme
was reimplemented by substituting 1NN classifiers using
Euclidean distance metric with support vector machines
(SVM) with radial base function (RBF) kernels. The SVM
classifiers did not result in any significant improvement over
the simple 1NN classifiers using Euclidean distance metric.
In our view, this attests to the discriminative power of the iso-
geodesic/Procrustean features deployed on high-information
fiducial areas.

Finally, it is striking to observe that such highly compet-
itive performances are obtained by utilizing a small frac-
tion of the range data captured in iso-geodesic contours.
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Saving facial contours instead of full range images can reduce
the storage resources required for extremely large databases
likely to emerge in the future. It should be noted that the
current algorithm uses only 3 contours around each fidu-
cial. Like any other face recognition algorithm, the per-
formance of the proposed contour based face recognition
algorithm will vary somewhat with the number of regis-
tered subjects. In order to counter this performance varia-
tion, the number of contours around the landmarks can be
increased.
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